Effector-independent reduction in choice reaction time following bi-hemispheric transcranial direct current stimulation over motor cortex
نویسندگان
چکیده
Increased reaction times (RT) during choice-RT tasks stem from a requirement for additional processing as well as reduced motor-specific preparatory activation. Transcranial direct current stimulation (tDCS) can modulate primary motor cortex excitability, increasing (anodal stimulation) or decreasing (cathodal stimulation) excitability in underlying cortical tissue. The present study investigated whether lateralized differences in choice-RT would result from the concurrent modulation of left and right motor cortices using bi-hemispheric tDCS. Participants completed a choice-RT task requiring either a left or right wrist extension. In forced-choice trials an illuminated target indicated the required response, whereas in free-choice trials participants freely selected either response upon illumination of a central fixation. Following a pre-test trial block, offline bi-hemispheric tDCS (1 mA) was applied over the left and right motor cortices for 10 minutes, which was followed by a post-tDCS block of RT trials. Twelve participants completed three experimental sessions, two with real tDCS (anode right, anode left), as well as a sham tDCS session. Post-tDCS results showed faster RTs for both right and left responses irrespective of tDCS polarity during forced-choice trials, while sham tDCS had no effect. In contrast, no stimulation-related RT or response selection differences were observed in free-choice trials. The present study shows evidence of an effector-independent speeding of response initiation in a forced-choice RT task following bi-hemispheric tDCS and yields novel information regarding the functional effect of bi-hemispheric tDCS.
منابع مشابه
Effect of Unilateral Transcranial Direct Current Stimulation on Reaction Time in Veterans and Disabled Athletes
Aims: Recently, Transcranial Direct Current Stimulation (tDCS) has been considered by researchers to improve various processes. The aim of this study was to investigate the effect of tDCS on reaction time in veterans and disabled athletes. Materials and Methods: This semi-experimental study with pre-test post-test design was conducted in 2018 among all veterans and disabled persons, who were me...
متن کاملDoes the Longer Application of Anodal-Transcranial Direct Current Stimulation Increase Corticomotor Excitability Further? A Pilot Study
Introduction: Anodal transcranial direct current stimulation (a-tDCS) of the primary motor cortex (M1) has been shown to be effective in increasing corticomotor excitability. Methods: We investigated whether longer applications of a-tDCS coincide with greater increases in corticomotor excitability compared to shorter application of a-tDCS. Ten right-handed healthy participants received one se...
متن کاملFunctional near-infrared spectroscopy maps cortical plasticity underlying altered motor performance induced by transcranial direct current stimulation.
Transcranial direct current stimulation (tDCS) of the human sensorimotor cortex during physical rehabilitation induces plasticity in the injured brain that improves motor performance. Bi-hemispheric tDCS is a noninvasive technique that modulates cortical activation by delivering weak current through a pair of anodal-cathodal (excitation-suppression) electrodes, placed on the scalp and centered ...
متن کاملThe effect of Transcranial direct current stimulation (tDCS) on the lower limb function with & without Step exercise in chronic stroke patients: a randomized control clinical trial
Introduction: The aim of this study was to investigate the effect of one-session transcranial direct current stimulation (tDCS) of cerebral cortex with and without step practice on foot function in patients with chronic stroke. Materials and Methods: It was an interventional and clinical trial study. Forty patients with chronic stroke were randomly assigned into four groups, Sham tDCS, tDCS, t...
متن کاملPolarity-specific effects of motor transcranial direct current stimulation on fMRI resting state networks☆
Transcranial direct current stimulation (tDCS) has been used to modify motor performance in healthy and patient populations. However, our understanding of the large-scale neuroplastic changes that support such behavioural effects is limited. Here, we used both seed-based and independent component analyses (ICA) approaches to probe tDCS-induced modifications in resting state activity with the ai...
متن کامل